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Abstract

Although research has provided abundant evidence for Taichi-induced
improvements in psychological and physiological well-being, little is
known about possible links to brain structure of Taichi practice. Using
high-resolution MRI of 22 Tai Chi Chuan (TCC) practitioners and 18
controls matched for age, sex and education, we set out to examine the
underlying anatomical correlates of long-term Taichi practice at two
different levels of regional specificity. For this purpose, parcel-wise and
vertex-wise analyses were employed to quantify the difference between
TCC practitioners and the controls based on cortical surface
reconstruction. We also adopted the Attention Network Test (ANT) to
explore the effect of TCC on executive control. TCC practitioners,
compared with controls, showed significantly thicker cortex in precentral
gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and
superior temporal gyrus and medial occipito-temporal sulcus and lingual
sulcus in the left hemisphere. Moreover, we found that thicker cortex in
left medial occipito-temporal sulcus and lingual sulcus was associated with
greater intensity of TCC practice. These findings indicate that long-term
TCC practice could induce regional structural change and also suggest
TCC might share similar patterns of neural correlates with meditation and
aerobic exercise.
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Introduction

Inactivity is a growing public health concern. About 74% of adults in the
United States do not meet the recommended guideline of at least 30
minutes of moderate-intensity physical activity on most days of the week
[1]. In developing countries such as China, the rate of sedentary lifestyle
seems higher, at 82.1% Chinese adults did not participate in regular
physical exercise [2]. This issue is undoubtedly associated with a number
of physical (for example, cardiovascular disease, colon and breast cancer,
and obesity) and mental (for example, depression and anxiety) disorders
[3]. It is also possible that human evolution, which has been shaped by an
active lifestyle, will be maladapted by the sedentary behaviors of today
[4], [5]. Additionally, economic cost of this sedentary lifestyle brings
about enormous social burden in both developed and developing countries.
Therefore, highlighting the importance of promoting physical activity
across the lifespan could have great implications for improving health and
function in individuals, while also reducing the health and economic
burden placed on society. However, there are still large numbers of people
still keep sedentary during their daily life even when they have full
knowledge of the importance of physical activity. It is shown that
environmental factors such as lack of fitness equipment, not enough
activity space, and subjective factors such as being afraid of injury,
contribute to plenty of dropouts during physical exercise [6]. So it is
important to select the appropriate exercise type to engage in it when
individuals determined to start exercise program.

Tai Chi Chuan (TCC) is a form of mind and body exercise originating
from ancient China with a long and rich history based on ancient Chinese
Tao philosophy. It can be practiced without special facilities or expensive
equipment and can be performed either individually or in groups. Most
importantly, because of its low- to- moderate intensity characteristics and
slow and relaxed nature, TCC is suited for persons of all ages, including
both older adults and individuals with chronic diseases [7]. In view of
these merits, it has grown in popularity and spread rapidly over more than
50 countries currently since it was developed into short 24
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forms/movements in 1956. As estimated, almost 150 million people
practice TCC around the world for its physical health benefits [8], [9]
including increasing muscle strength [10], flexibility [11], and balance and
motor control [12], reducing risks of falling [7], deceasing factors such as
pain [13], blood pressure, Parkinson disease symptoms [14] and
cardiovascular diseases (CVDS) symptoms [15]. Additionally, some
studies highlight the mental benefits that practicing TCC may achieve
when used as an intervention tool, such as its positive effects on mood
[16], self-efficacy [15], stress [17], [18] and quality of life [19]. There has
been a proliferation of research interest on the effect of TCC on physical,
mental and social function over the past decades (see the reviews [7], [11],
[18], [20]–[22]. Of note, TCC, as a kind of complex movements, has also
been proven to have positive effect on executive function among these
benefits in several studies. For instance, Matthews and Williams [23]
evaluated the effects of a TCC program on cognitive performance in older
adults and found TCC has benefits for the tasks involved in executive
function. Similar results have been obtained by Black et al. [24] using an
experimental design, which revealed that participants in the TCC program
experienced a significant improvement in tasks including components of
executive function from baseline to 12 months.

At first glance, this impressive range of topics bears ample testimony to a
thriving field. On closer inspection, an important issue arises. This
welcome trend is evident in the abundance of recent studies mainly on the
effects of TCC on the individual's behavior. However, the potential neural
mechanism underlying the behavioral effects induced by practicing TCC
has received surprisingly little attention. To date, it is unknown which
structural brain changes are associated with TCC practice, not to mention
the neural correlates of behavioral change, such as executive function
induced by TCC training. Accordingly, we compared groups of highly
experienced TCC practitioners and healthy control non TCC practitioners
to investigate whether brain structural difference existed between the two
groups. We expected brain structural changes to be correlated with
experience of practicing TCC and with the performance in executive
function.
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Methods

Ethics statement

Written informed consent from the participants was obtained, and the
study “the neural correlates of the effect of Taichi on the mental health”
was approved by the Institutional Review Board of the Institute of
Psychology, Chinese Academy of Sciences and was performed in
accordance with the ethical standards laid down in the 1964 Declaration of
Helsinki. The ethics committee specifically approved all of the procedures
of this study. Before the scans were taken, all subjects brought the
volunteer screening forms to the Institute of Psychology, Chinese
Academy of Sciences to exclude any subjects who had a history of hearing
or vision problems, physical injury, seizures, metal implants, and head
trauma with loss of consciousness, or pregnancy.

Participants

The sample consisted of two groups. The first group was composed of 22
(7 males) experienced TCC practitioners (age: 52±6 years) recruited from
local TCC activity centers in Beijing. On average, participants had 14±8
years of TCC experience, which is an indicator of duration of practice. The
practice frequency (practice times per week) and the duration each session
were also obtained to account the total hours to practice TCC per week,
which is regarded as the intensity of TCC practice. TCC styles mainly
included Yang, Wu, Sun and modified Chen. The length of formal TCC
practice ranged from 30 to 90 minutes each session, with the majority of
TCC practitioners (85%) having daily sessions. Twenty control
participants (age: 54±6 years) with no physical exercise, yoga or
meditation experience were recruited in this study. Two controls were
excluded from the control group who showed macroscopic cerebral
abnormalities of cerebral infarction without clinical significance following
the consistent diagnosis of reading by two radiologists. The final sample
included 22 active TCC practitioners and 18 controls matched for sex, age,
race (both groups 100% Han) and years of education (Table 1).
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Table 1
Participant characteristics.

Age
(years)

Gender Educatio
n (years)

Practice
Duration
(years)

Practice
Intensity
(hours/week)

Intracranial
Volume (ICV)
(mm3)

TCC 52±6 7 M;15 F 12±3 14±8 11±3 1165183±221749

Controls 54±6 8 M; 10F 12±3 — — 1114497±170647

Behaviour tests

Before MRI sessions, the participants completed an Attention Network
Test (ANT), which is considered as the flanker test to measure different
behavioral aspects of attention including alerting, orienting and executive
attention based on the Attention Network theory [25]. Participants were
seated in 65 cm front of a computer screen. Stimuli were presented and
responses were collected with E-prime Software 2.0. Participants were
instructed to respond as fast and accurately as possible to a target stimulus
that was presented in the center of a horizontal row with five stimuli. The
target stimulus was an arrow pointing either to the left or to the right and
was flanked by two flanker stimuli on each side. Secondly, participants
were instructed to press the left mouse button with their left thumb or the
right mouse button with their right thumb as fast as possible when the
target arrow pointed to the left or right, respectively. The four surrounding
flanker stimuli were all arrows pointing in the same or the opposite
direction of the target stimulus or were just neutral stripes. The condition
in which all five arrows pointed in the same direction was called congruent
target condition. The condition in which the flanker arrows pointed in the
direction opposite to the target arrow was named the incongruent target
condition. The condition when the four flanker stimuli were stripes was
called the neutral target condition. The target stimulus and the flanker
stimuli were presented at a visual angle of 1.1 degree above or below a
fixation cross presented in the middle of the screen.
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The target stimulus could be cued in four different ways. In the first cueing
condition, an asterisk was presented at the location of the fixation cross
(center cue condition) and the target configuration was presented above or
below the center of the screen, with equal probability. In the second cueing
condition, two asterisks were presented (double condition); the two
asterisks were presented at the fixed location of 1.1 degree of visual angle
above and below the center of the screen. Since the cue appeared 500 ms
before target onset, the cue provided information on the timing of the
target stimulus. In the third cueing condition, an asterisk was presented at
the future location of the target stimulus above or below the center of the
screen (spatial cue condition). In this case, participants were informed both
on the timing and the location of the target configuration. In the fourth
cueing condition, no cue was given and, as a consequence, participants had
no information about the timing and the location of the upcoming target
symbol.

The attention network test consisted of one training block with 24 trials
and three test blocks with 96 trials each. After the first two blocks,
participants took a short break before starting the next one. A single trial
consisted of the following: during a variable interval (VI, see Figure 1),
ranging from 400 ms to 1600 ms, a fixation cross was presented in the
middle of the screen. Then, depending on the cure condition, a cue could
be presented for 100 ms. Thereafter, a central fixation was presented for
400 ms, followed by the target stimulus, which was presented for 1700 ms,
or shorter if a response was given within 1700 ms. Finally, a fixation cross
was presented during a variable delay. The length of this delay was
determined by subtracting the reaction time plus 400 ms from the constant
trial duration that was 3500 ms. All 12 combinations of cueing (4) and
target (3) conditions were presented in random order within each block.
Both reaction time and error scores were measured for each condition.
Only half of the control group and TCC group participated in this test
because of time limit.
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Figure 1
An illustration on the behavioral tests including three stages.
During a variable interval (VI = 400–1600 ms), a central fixation cross is presented and the
participant is instructed to look at it. A cue then is presented for 100 ms. The four cue
conditions are shown: No Cue, Central Cue, Double Cue, and Spatial Cue. Following the
cue presentation, a central fixation cross is displayed and is followed by the target stimulus.
The three different target configurations are shown: the Neutral, Congruent and Incongruent
target configurations. The target is displayed until the participant responds with a maximum
of 1700 ms. In case of the reaction time shorter than 1700 ms, the stimulus is replaced by
the central fixation cross.
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MRI acquisition

High-resolution anatomical images of the whole brain were acquired on a
3T Trio system (Siemens, Erlangen, Germany) in Beijing Normal
University with a 12-channel head matrix coil using a
magnetisation-prepared rapid-acquisition gradient echo (MPRAGE)
sequence (TR = 2530 ms, TE = 3.39 ms, flip angle = 7 degrees, slice
thickness = 1.33 mm, FOV = 256 mm, 256×256 matrix). The scan time for
the T1-weighted sequence was 8 minutes and 6 seconds. Brain images
were reconstructed and visually checked for major artefacts (e.g. motion,
ringing, wrap around and neurological abnormalities) before further image
processing.

MRI preprocessing and surface reconstruction

Structural image processing was conducted with FreeSurfer (version 5.1),
which is integrated as part of the pipeline of Connectome Computation
System (CCS: http://lfcd.psych.ac.cn/ccs.html) [26]. Specifically,
individual MR images were first denoised by using a spatially adaptive
non-local means filter [27], [28] and corrected for intensity variations due
to MR inhomogeneities [29]. Brain tissues were then extracted using a
hybrid watershed/surface deformation procedure [30] and automatically
segmented into the cerebrospinal fluid (CSF), white matter (WM) and
deep gray matter (GM) volumetric structures [29]. Cutting planes were
then computed to disconnect the two hemispheres and subcortical
structures [29], and the interior holes of the segmentation were filled by a
connected component analysis [29]. A smooth representation of the
GM-WM interface (i.e., white surface) and GM-CSF interface (i.e., pial
surface) was produced by transforming a tessellation of a triangular mesh
over the GM-WM boundary of each hemispheric volume [29], which was
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further corrected for topological defects in the surface to achieve a
spherical topology [31], [32]. Finally, each subject's surface mesh was
inflated into a sphere to compute a smooth, invertible deformation of the
resulting spherical mesh to a common spherical coordinate system that
aligned the cortical folding patterns across subjects [29], [33].

Quality assurance

During the preprocessing, CCS generated various figures to guide three
quality assurances (QAs) on brain extraction, surface reconstruction and
anatomical images registration (http://lfcd.psych.ac.cn/ccs/QC.html).
Specifically, the quality of the brain extraction and intensity bias
correction must be visually assessed and manually corrected if the
procedure failed. The brain tissue segmentation and brain surface
reconstruction were also visually checked to ensure a good quality. Two
researchers (F.M.F and H.M.D) carried out the QAs to double check the
quality matching the criteria. No subjects failed to pass the quality check.

Brain morphometry computation

Computation of cortical thickness, surface area and volume are completed
by the recon-all command. Specifically, for each vertex on the white
matter surface, the shortest distance to the pial surface is first computed.
For the point on the pial surface, the shortest distance to the white matter
surface is calculated. Finally, the cortical thickness at that location of the
vertex is the mean of these two values [34]. This measure of cortical
thickness has been demonstrated to show good test–retest reliability across
time, scanner manufacturers and across field strengths [35]. Cortical
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surface area was computed as the total area of the triangles connected to a
vertex [34], [36]. This measure is in agreement with surface area derived
from post-mortem studies and has been validated on several brain
phantoms and compared with other surface-based analysis packages
[37]–[39]. Cortical volume is calculated as the product of the cortical
thickness and surface area for each vertex. All individual maps of cortical
thickness and surface area were generated in the native space and then
transferred into the fsaverage standard spherical surface.

Parcel-wise analysis

The cortical surface was parcellated into 74 and 34 parcellation elements
(parcels) for each hemisphere defined by the Desikan-Killiany atlas [40],
[41] and Destrieux atlas [42] to explore the large-scale structural changes,
respectively. The mean of vertex-wise cortical thickness, volume and
surface area were then estimated for each parcel of all participants. In
addition, the subcortical structure was segmented into 17 regions
providing 8 regions (Amygdala, Caudate, Hippocampus, Accumbens-area,
Pallidum, Putamen, Thalamus-Proper, Cerebellum-Cortex) in each
hemisphere and Brainstem. The volume of each subcortical region was
calculated.

For each parcel, group differences in cortical morphological indices
between TCC group and control group were assessed in SPSS 19.0 using
analysis of covariance (ANCOVA). The age, sex, education and
intracranial volume (ICV) were modelled as covariates. The statistical
significance level for group differences in cortical thickness and surface
area was corrected to account for multiple comparisons with Bonferroni
approach (i.e., p<0.05/N) where N is the number of parcels in one
hemisphere (34 for Desikan-Killiany atlas and 74 for Destrieux atlas). Of
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note, the number of parcels for volume-based analysis is 43 and 83 for
these two atlases including the 9 additional subcortical parcels,
respectively. In order to further examine whether the difference in regional
cortical morphology was associated with TCC practice, we conducted
partial correlation analyses between these two variables by modeling sex,
age, education and ICV as covariates. Finally, correlation analysis was
conducted between the ANT performance and structural measures in both
groups for these brain regions showing significant morphometrical
changes.

Vertex-wise analysis

Individual morphometry surface (registered to fsaverage) maps (thickness,
area and volume) were first spatially smoothed using a Gaussian filter of
10 mm FWHM to improve the inter-individual anatomical
correspondences. For each vertex, a general linear model (GLM) was
carried out to examine the cortical morphometry differences between TCC
and controls. All these GLMs include two discrete factors (sex and group)
and three continuous factors (age, education and ICV) where the group is
the variable of interest. We then tested the effect of Group on the three
morphometric measures. To account for multiple comparisons, these
surface GLMs were corrected at cluster-level (p<0.05) by using random
field theory as implemented in Matlab-based functions in FreeSurfer [43].
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Results

Demographic data and behaviour performance

The two-sample T-tests revealed no significant difference in age (t
(38) = 1.149; p = 0.258) and education (t (38) = −0.435; p = 0.666). The two
groups also did not differ in ICV observed (t (38) = 0.817; p = 0.419). For
the reaction time of ANT, TCC group exhibited shorter mean reaction time
relative to the control group in terms of executive function performance
(Figure 2A), although this difference was not significant (t (18) = 1.227;
p = 0.236). In addition, no significant group difference in accuracy of ANT
performance was detected (control group: 99.0%±0.008; TCC group:
99.5%±0.006; t (18) = −1.421, p = 0.173). Correlation analysis for TCC
group showed that the performance of executive attention was negatively
correlated with TCC experience (r = −0.659; p = 0.038) (Figure 2B).

Figure 2
Group differences in behavioral task performance.
A) group differnces in performance of executive attention between TCC group and control
group; B) scatter plot of the association between performance of executive attention and
TCC experience (years of practice).
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Group differences in cortical morphology and subcortical morphology

For all parcels derived from both Desikan-Killiany atlas and Destrieux
atlas, we did not detect any differences in thickness, area and volume
between the two groups. As for subcortical parcels, no significant
difference in their volumes was observed between two groups. In
vertex-wise analyses, we observed significantly thicker cortex in TCC
group compared to control group: superior temporal gyrus (t (38) = −3.699,
p = 0.001), medial occipito-temporal sulcus and lingual sulcus (t
(38) = −3.821, p = 0.001) in left hemisphere and the inferior segment of the
circular sulcus of the insula (t (38) = −4.202, p = 0.0002), precentral gyrus (t
(38) = −4.280, p = 0.0001) and middle frontal sulcus (part of dorsal lateral
prefrontal cortex-DLPFC) (t (38) = −2.512, p = 0.017) in right hemisphere
(Table 2). Beyond the cortical thickness, there was no any significant
change of cortical volume and surface area detectable in TCC practitioners
relative to the controls (Figure 3).
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Figure 3
Cortical regions thicker in TCC practitioners than in controls.
Statistical map depicting between-group differences in thickness at each point on the cortical
surface overlaid on the inflated average brain. All points meeting a p<0.05 (corrected)
threshold are displayed to better illustrate the anatomic extent of the areas and relative
specificity of the findings.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621760/figure/pone-0061038-g003/


Table 2
Thicker cortex in TCC group compared with control group.
Brain region Brodma

nn Area
Area
Size
(mm2)

Numbe
r of
Vertex

Talairach Coordinates
(Peak Vertex)

P-valu
e

Left hemisphere

G_temp_sup-Plan_p
olar

38 591.77 1197 44.1 7.4 −20.6 0.001

S_oc-temp_med_an
d_Lingual

36 402.45 909 20.7 −40.0 −6.5 0.001

Right hemisphere

S_circular_insula_inf 20 1085.6
3

2054 42.2 −2.2 −17.8 0.0002

G_precentral 44 447.49 1036 59.2 5.0 21.2 0.0001

S_front_middle 9 420.15 712 23.2 42.4 19.4 0.017
Open in a separate window
G_temp_sup-Plan_polar  =  planum polare of the superior temporal gyrus;
S_oc-temp_med_and_Lingual  =  medial occipito-temporal sulcus (collateral sulcus) and
lingual sulcus; S_circular_insula_inf  =  inferior segment of the circular sulcus of the insula;
G_precentral  =  precentral gyrus; S_front_middle  =  middle frontal sulcus.

Correlations between TCC experience and cortical morphology

To examine whether the cortical thickness of each of these five regions
showing group differences correlated with intensity of TCC practice, we
calculated partial correlations controlling for the sex, age, education and
ICV. We detected a trend of a positive correlation between the thickness of
left medial occipito-temporal sulcus and lingual sulcus and the intensity of
TCC practice (r = 0.38, p = 0.084). We further noticed that the values of
intensity of TCC practice here were marginally nonnormally distributed
(Shapiro-Wilk Test, p = 0.056). The effect of TCC practice on brain
morphology may follow a non-linear relationship as indicated in previous
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studies of TCC on other physical properties [44], [45]. Specifically, the
change of relevant cortical thickness can be slower than increasing speed
of the intensity of TCC practice. Accordingly, we performed a natural
logarithm transform on the original score of intensity of TCC practice. The
normality of intensity scores of TCC practice was improved with this
transformation (Shapiro-Wilk test, p = 0.119). Thus, the thickness of left
medial occipito-temporal sulcus and lingual sulcus significantly correlated
with log-transformed intensity of practice (r = 0.43, p = 0.045) (Figure 4),
while no other significant correlation were detected based upon the
transformed intensity for other four clusters.

Figure 4
Scatter plot of cortical thickness in TCC group.
The red line represented the correlation between logarithm transformed intensity and cortical
thickness (adjusted by sex, age, education and ICV) in left medial occipito-temporal sulcus
and lingual sulcus. The green dotted lines indicated its 95% confidence intervals. The linear
correlation between intensity and the cortical thickness in this region are displayed in grey
line with its confidence intervals as dotted.
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Correlations between ANT and cortical morphology

For each of the five clusters showing differences in cortical thickness
between TCC experts and controls, we performed partial correlation
analysis between ANT and its cortical thickness in both TCC group and
control group. The results indicated that the reaction time of ANT was
positively correlated with cortical thickness of left superior temporal gyrus
(r = 0.929, p = 0.007) in TCC group, whereas this relationship was not
detectable in control group.

Discussion

To the best of our knowledge, the current study is the first to
systematically explore the brain morphometry of TCC practitioners. We
observed TCC practitioners had thicker cortical thickness in left superior
temporal gyrus, left medial occipito-temporal sulcus and lingual sulcus,
right inferior segment of the circular sulcus of the insula, right precentral
gyrus and right middle frontal sulcus (part of dorsolateral prefrontal
cortex-DLPFC) compared to the controls. The thickness of medial
occipito-temporal sulcus and lingual sulcus was detected to have a trend
toward positive correlation with the intensity of TCC practice, providing
evidence that long-term TCC practitioners have structural alterations in
grey matter, which is possibly related to regular exercise. The consistency
of our results with brain studies of meditation and aerobic exercise, leads
us to speculate that the underlying mechanism of TCC training effects on
brain structure might overlap with those other activities.

The most interesting findings of the present study were that the differences
in these brain regions were remarkably consistent with previous studies of
brain structural measures in meditation practice [46]–[48]. The first study
in morphological differences in meditators by Lazar et al. [46] compared
cortical thickness of 20 insight meditation practitioners with 9 years of
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average meditation experience and 15 matched controls. Greater thickness
was found in the left superior temporal gyrus, the right anterior insula,
right prefrontal cortex, right middle and superior frontal sulci (BA 9) in
meditation practitioners. Holzel et al. [49] found that meditation
practitioners had a significantly higher concentration of grey matter in
inferior temporal gyrus and right anterior insula in a sample of 20
meditation practitioners relative to 20 controls, which also overlapped with
the main results of current study. Moreover, Kang and his colleagues
observed that superior frontal cortex, temporal pole and interior temporal
cortex were thicker in meditators compared to the controls [50].
Coincidently, these brain regions are very similar with our findings in
current study. [1], [51], [52] suggested that other forms of yoga and
meditation would likely have a similar impact on cortical structure,
although each tradition would be expected to have a slightly different
pattern of cortical thickening based on the specific mental exercise
involved. Our results showed that TCC group showed greater cortical
thickness in some specific regions such as prefrontal cortex and temporal
cortex relative to the control group. These brain regions are also reported
to be greater in grey matter volume or concentration in neuroimaging
studies of aerobic exercise. In fact, a growing body of literature has linked
aerobic exercise with these structural changes. Human neuroimaging
studies have similar findings which have consistently shown that chronic
aerobic exercise could lead to an increasing gray and white volume in the
prefrontal cortex of older adults [51]. In addition, greater amounts of
physical activity are associated with sparing of prefrontal and temporal
brain regions of late adulthood over a nine-year period [53]. Further,
medial temporal lobe volumes are larger in higher-fit older adults [53].
Therefore, it possibly provides neuroimaging evidence for a long-standing
view that TCC is a form of meditative movement greatly integrating
characteristics of meditative practice and aerobic exercise.

Of note, the largest group difference was in the thickness of precentral
gyrus. The precentral sulcus, located approximately in primary motor
cortex, is responsible for observation and execution of motor tasks and
important for highly automatic circuitry because it mediates visuomotor
actions [54]. In addition, the final cortical output for already processed
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movement commands relays signals from premotor cerebral cortical sites
to the spinal cord. The significant correlation between the surface area of
precentral gyrus and TCC experience indicates that TCC practice might
enhance corresponding capability to process motor-related information.
According to an arrangement of motor homunculus, the superior part of
precentral sulcus is responsible for the somatotopic representation of body
parts of hand, arm, trunk, hip and foot. Such bodily regions are often used
in practicing TCC movements such as weight-shifting between right and
left legs, knee flexion, straight and extended trunk, rotation, and
asymmetrical diagonal arm and leg movements with bent knees. Currently,
although TCC practice is reported to decrease falling and increase
balancing in the elderly in clinical intervention trials, no related brain
research has disclosed the underlying neural correlates [55]. We suppose
this findings is helpful to explain why practicing TCC can improve
balance and prevent falls [56]. However, this inference needs to be tested
directly between the falls and anatomical change in the future.

The middle frontal sulcus corresponding approximately to BA9 was also
found to have greater cortical thickness in TCC practitioners. This region
serves as the highest cortical area responsible for motor planning,
organization, and regulation and also plays an important role in the
integration of emotion and cognition, and executive function [57], [58].
Recent behavioral studies on TCC indicate that the significant effect of
TCC on cognition mainly focuses on executive control (see reviews,[20]).
Meanwhile, most studies on meditation reported that DLPFC might be the
key region during meditation in structure and function. [46], [59], [60].
Moreover, a large number of studies demonstrate an important role of BA9
in for exercise-related improvement of executive function in adolescents
and the elderly [1]. It has been hypothesized that TCC practitioners
improved their cognitive processing ability, especially executive function,
by controlling breath, focusing on concentration, mindfulness, and
inhibiting distractions from surroundings regularly[20].

Right insula is a brain region showing a great between-group difference.
Greater right insula grey matter correlates with increased accuracy in the
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subjective sense of the inner body, and with negative emotional experience
[61]. Insula is also believed to process convergent information to produce
an emotionally relevant context for sensory experience such as pain,
happiness and sadness and integrate information relating to bodily states
into higher-order cognitive and emotional processes in functional imaging
studies [62]. Our finding further supports the crucial role of the insula for
the experience of peacefulness and relaxation during TCC practice.

In the medial occipito-temporal sulcus and lingual sulcus, we not only
found the thicker cortex but also the positive correlation with the intensity
of practice, indicating potential influences of TCC practice on these
regions. The medial occipito-temporal sulcus and lingual sulcus
corresponds approximately to BA 36, which is reported to be activated in
retrieving spatial information [63], [64]. Neuropsychological and
neuroimaging studies suggest BA36 is involved in acquiring spatial
information [65]. According to the involvement of muscles in the
movement, TCC is classified to be a kind of gross motor skills requiring
moving the trunk and limbs by spatial navigation towards oneself, during
which practitioners could simultaneously integrate various kinds of spatial
information, mainly from proprioception. Therefore, we speculate that the
brain region involved in spatial navigation and spatial information
acquisition seems to play an important role in performing TCC
movements, and may grows thicker after long-term practice.

Although MRI findings clearly suggest that some structural changes are
occurring, they are unspecific regarding the underlying cellular events for
these structures. Based on some studies ranging from cell level to
behaving animals, it is reasonable to assume that some candidate
mechanisms such as synaptogenesis [66], [67], changes in neuronal
morphology [67] and proliferation of glial cells [23] might contribute to
these structural changes during TCC practice. One explanation for these
various morphological alternations might relate to the formation of new
connections by dendritic spine growth (synaptogenesis) and proliferation
of glial cells (gliogenesis), which reflected remodeling of neuronal
processes, rather than neurogenesis [68]. This view is also supported by
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plenty of relevant animal studies. For instance, motor skill learning is
found to be associated with synaptogenesis and changes in dendritic spine
morphology [66], [67]. In view of our findings in precentral gyrus, an
alternative explanation is that TCC experience as a typical form of
physical exercise may alter vasculature [69]. It is well documented in
animals involved in chronic exercise that exercise increases the vascular
volume fraction in rat cortex, especially in motor cortex [70], [71]. As for
the neurogenesis, some studies have demonstrated that the changes in the
size and number of neurons are a minor factor in MRI changes,
particularly those found outside the hippocampus in association with
learning [69]. Regarding the underlying cellular mechanism, it still
remains unclear to what extent TCC exercise influence cortical thickness.
The radial unit hypothesis identifies the cortical column as a fundamental
unit of cortical organization. It is suggested that cortical thickness is
related to the number or density of cells in a column [72]–[74], which
might help to explain the detailed change of thickness in cellular level.

In behavioral testing, we observed significant correlation between practice
duration and ANT test, which indicated that executive function of TCC
practitioners is associated with TCC experience. Superior temporal gyrus
thickness showed a positive correlation with ANT reaction time in our
study, which means that the relationship between better performance in
ANT test and thinner cortex in these regions might be a sample artifact. In
correlation analysis, we observed that the cortical thickness was positively
correlated with the intensity of practice instead of practice duration. As a
matter of fact, quite a few studies have failed to detect a significant
correlation between practice duration (months or years) and brain
structures [59], [75]. One reason might result from the inaccuracy of the
indicators to reflect experience. Luders suggests that the extrapolations
over lengthy periods are subjective rather than precise, although
researchers have subject-specific estimates with respect to frequency and
length of their practice sessions[76]. Undoubtedly, our findings lend
support to his explanation for the inconsistent results [76]. Meanwhile, it
implies that it is of great importance to choose an appropriate indicator for
determining the actual extent of the individual training.
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Conclusion

Although cross-sectional study cannot rule out the pre-existing difference
in brain structures, our findings may suggest the difference in cortical
thickness for TCC practitioners might be associated with TCC practice.
The underlying neurological mechanism for long-term TCC practice might
have similar pattern to cortical morphology associated with meditation and
aerobic exercise. Exploration on uses of TCC as one modality of
behavioral intervention to maintain and enhance the human brain structure
and function is an exciting avenue of research with the potential for a
considerable public health yield. At the same time, this result indicates that
it is imperative to conduct longitudinal studies aiming to disclose the real
causal relationship between the change of brain structures and TCC
practice.
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